Mass-culture technique of a South African Heterorhabditis bacteriophora isolate, using in vitro liquid culture
DOI:
https://doi.org/10.17159/2254-8854/2025/a20609Keywords:
bacteria, culture media, egg yolk powder , recovery, soy powder yieldAbstract
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN), and together with its mutualistic bacteria, is a highly effective insect biocontrol agent. The preferred method for large-scale production involves in vitro liquid culture, whereby the nematode and bacteria are cultivated in an artificial medium that replicates the haemocoel conditions found within the insect host. Although the mass-culturing method for H. bacteriophora has proven successful in other countries, it has still to be implemented as a local commercial product in South Africa, despite its considerable potential for pest control. Several factors impact on the success of an in vitro liquid culture, including the bacterial inoculum density and the ingredients used in the culture media. Thus, this study aimed to develop an in vitro liquid culture protocol for a local isolate of H. bacteriophora. Switching from soy powder to egg yolk powder significantly increased the yield of infective juveniles (IJ) during culture, despite there being no differences in IJ recovery between days 2 to 4 after nematode inoculum. Furthermore, the bacterial inoculum density exerts a significant influence on recovery and yield, with the use of a 2% (v/v) inoculum concentration showing the most favourable results. Bacterial cell density is crucial for IJ recovery, as it provides the food signal that activates the IJ. The success obtained with this liquid culture technique for H. bacteriophora paves the way for the optimisation of various additional liquid culture parameters, including nutrients levels, oxygen concentrations and cost-effective ingredients.
Downloads
References
Bhat AH, Chaubey AK, Askary TH. 2020. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt Journal of Biology and Pest Control 30, 31. https://doi.org/10.1186/s41938-020-0212-y DOI: https://doi.org/10.1186/s41938-020-0212-y
Bedding RA, Molyneux AS. 1982. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica. 28(3):354–359. DOI: https://doi.org/10.1163/187529282X00402
Boemare N. 2002. Biology, taxonomy and systematics. In: Gaugler R (editor), Entomopathogenic nematology. CABI Publishing. pp. 35–56. DOI: https://doi.org/10.1079/9780851995670.0035
Booysen E, Malan AP, Dicks LTM. 2022. Colour of Heterorhabditis zealandica-infected-Galleria mellonella dependent on the Photorhabdus symbiont, with two new nematode-symbiotic associations reported. Journal of Invertebrate Pathology. 189:107729. https://doi.org/10.1016/j.jip.2022.107729 DOI: https://doi.org/10.1016/j.jip.2022.107729
Chavarría-Hernández N, Espino-García JJ, Sanjuan-Galindo R, Rodríguez-Hernández AI. 2006. Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey. Journal of Biotechnology. 125(1):75–84. https://doi.org/10.1016/j.jbiotec.2006.01.021 DOI: https://doi.org/10.1016/j.jbiotec.2006.01.021
Cho CH, Whang KS, Gaugler R, Yoo SK. 2011. Submerged monoxenic culture medium development for Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens: Protein sources. Journal of Microbiology and Biotechnology. 21(8):869–873. https://doi.org/10.4014/jmb.1010.10055 DOI: https://doi.org/10.4014/jmb.1010.10055
Claasen NJ, Dunn MD, Malan AP. 2024. Selection of a South African Heterorhabditis bacteriophora isolate for in vitro liquid mass production for the control of Thaumatotibia leucotreta in grapevine. South African Journal of Enology and Viticulture. 45(2):121–129. https://doi.org/10.21548/45-2-6571 DOI: https://doi.org/10.21548/45-2-6571
Dunn MD, Belur PD, Malan AP. 2021a. A review of the in vitro liquid mass culture of entomopathogenic nematodes. Biocontrol Science and Technology. 31(1):1–21. https://doi.org/10.1080/09583157.2020.1837072 DOI: https://doi.org/10.1080/09583157.2020.1837072
Dunn MD, Belur PD, Malan AP. 2021b. Effect of glucose, agar supplementation and bacterial cell density on the in vitro liquid culture of Steinernema jeffreyense. African Entomology. 29(2):423–434. https://doi.org/10.4001/003.029.0000 DOI: https://doi.org/10.4001/003.029.0423
Dunn MD, Malan AP. 2023a. In vitro liquid mass production of the entomopathogenic nematode Heterorhabditis zealandica. African Entomology. 31. https://doi.org/10.17159/2254-8854/2023/a16150 DOI: https://doi.org/10.17159/2254-8854/2023/a16150
Dunn MD, Malan AP. 2023b. Steinernema yirgalemense inoculum size and timing impact on the population dynamics of in vitro liquid culture shake flask production. Nematology. 25(10):1079–1093. https://doi.org/10.1163/15685411-bja10278 DOI: https://doi.org/10.1163/15685411-bja10278
Dunn MD, Malan AP. 2024. Population dynamics of a South African isolate of Steinernema yirgalemense in vitro liquid culture, using egg yolk as protein source. Journal of Helminthology. 98: e64. https://doi.org/10.1017/S0022149X24000452 DOI: https://doi.org/10.1017/S0022149X24000452
Ehlers RU. 2001. Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology. 56(5):623–633. https://doi.org/10.1007/s002530100711 DOI: https://doi.org/10.1007/s002530100711
Ferreira T, Addison MF, Malan AP. 2014. In vitro liquid culture of a South African isolate of Heterorhabditis zealandica for the control of insect pests. African Entomology. 22(1):80–92. https://doi.org/https://doi.org/10.10520/EJC150972 DOI: https://doi.org/10.4001/003.022.0114
Gaugler R, Han R. 2002. Production technology. In: Gaugler R (editor), Entomopathogenic Nematology. CABI Publishing. pp. 289–310. DOI: https://doi.org/10.1079/9780851995670.0289
Golden JW, Riddle DL. 1984. The Caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Developmental Biology. 102(2):368–378. DOI: https://doi.org/10.1016/0012-1606(84)90201-X
Han R, Ehlers RU. 2001. Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiology Ecology. 35(3):239–247. https://doi.org/10.1111/j.1574-6941.2001.tb00809.x DOI: https://doi.org/10.1111/j.1574-6941.2001.tb00809.x
Han R, Leite LG, Yan X, Chacon-Orozco JG, Shapiro-Ilan DS. 2024. Mass production. In: Shapiro-Elan DI, Lewis EE (editors), Entomopathogenic Nematodes as Biological Control Agents. CABI Publishing. pp. 182–200. https://doi.org/10.1079/9781800620322.0010 DOI: https://doi.org/10.1079/9781800620322.0010
Hatab MAA, Gaugler R. 1999. Lipids of in vivo and in vitro cultured Heterorhabditis bacteriophora. Biological Control. 15(2):113–118. https://doi.org/10.1006/bcon.1999.0701 DOI: https://doi.org/10.1006/bcon.1999.0701
Hatting J, Patricia Stock S, Hazir S. 2009.Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Journal of Invertebrate Pathology. 102:120–128. https://doi.org/10.1016/j.jip.2009.07.003 DOI: https://doi.org/10.1016/j.jip.2009.07.003
Hatting JL, Moore SD, Malan AP. 2019. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future. Journal of Invertebrate Pathology. 165:54–66. https://doi.org/10.1016/j.jip.2018.02.004 DOI: https://doi.org/10.1016/j.jip.2018.02.004
Hirao A, Ehlers RU. 2010. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Applied Microbiology and Biotechnology. 85(3):507–515. https://doi.org/10.1007/s00253-009-2095-4 DOI: https://doi.org/10.1007/s00253-009-2095-4
Inman FL, Singh S, Holmes LD. 2012. Mass production of the beneficial nematode Heterorhabditis bacteriophora and its bacterial symbiont Photorhabdus luminescens. Indian Journal of Microbiology. 52(3):316–324. https://doi.org/10.1007/s12088-012-0270-2 DOI: https://doi.org/10.1007/s12088-012-0270-2
Islas-López MA, Sanjuan-Galindo R, Rodríguez-Hernández AI, Chavarría-Hernández N. 2005. Monoxenic production of the entomopathogenic nematode Steinernema carpocapsae using culture media containing agave juice (aguamiel) from Mexican maguey-pulquero (Agave spp.). Effects of the contents of nitrogen, carbohydrates and fat on infective juvenile production. Applied Microbiology and Biotechnology. 68(1):91–97. https://doi.org/10.1007/s00253-004-1818-9 DOI: https://doi.org/10.1007/s00253-004-1818-9
Jeffke T, Jende D, Mätje C, Ehlers RU, Berthe-Corti L. 2000. Growth of Photorhabdus luminescens in batch and glucose fed-batch culture. Applied Microbiology and Biotechnology. 54(3):326–330. https://doi.org/10.1007/s002530000399 DOI: https://doi.org/10.1007/s002530000399
Kaya HK, Gaugler R. 1993. Entomopathogenic nematodes. Annual Review of Entomology. 38(1):181–206. https://doi.org/10.1146/annurev.en.38.010193.001145 DOI: https://doi.org/10.1146/annurev.en.38.010193.001145
Lewis EE, Campbell J, Griffin C, Kaya H, Peters A. 2006. Behavioural ecology of entomopathogenic nematodes. Biological Control. 38(1):66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 DOI: https://doi.org/10.1016/j.biocontrol.2005.11.007
Lunau S, Ehlers R-U, Stoessel S, Schmidt-Peisker AJ. 1993. Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica. 39(1-4):385–399. https://doi.org/10.1163/187529293X00330 DOI: https://doi.org/10.1163/187529293X00330
Malan AP, Moore SD. 2016. Evaluation of local entomopathogenic nematodes for the control of false codling moth, Thaumatotibia leucotreta (Meyrick, 1913), in a citrus orchard in South Africa. African Entomology. 24:489–501. https://dx.doi.org/10.4001/003.024.0489 DOI: https://doi.org/10.4001/003.024.0489
Malan AP, Knoetze R, Moore SD. 2011. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology. 108(2):115–125. https://doi.org/10.1016/j.jip.2011.07.006 DOI: https://doi.org/10.1016/j.jip.2011.07.006
Odendaal D, Addison MF, Malan AP. 2016. Evaluation of above-ground application of entomopathogenic nematodes for the control of diapausing codling moth (Cydia pomonella L.) under natural conditions. African Entomology. 24(1):61–74. https://doi.org/10.4001/003.024.0061 DOI: https://doi.org/10.4001/003.024.0061
Ogier J-C, Akhurst, R, Boemare N, Gaudriault S. 2023. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends in Microbiology 31:629–643. https://doi.org/10.1016/j.tim.2023.01.004 DOI: https://doi.org/10.1016/j.tim.2023.01.004
Poinar Jr GO. 1975. Description and biology of a new insect parasitic Rhabditoid, Heterorhabditis bacteriophora n. gen., n. sp. (Rhabditida; Heterorhabditidae n. fam.). Nematologica. 21(4):463–470. https://doi.org/10.1163/187529275X00239 DOI: https://doi.org/10.1163/187529275X00239
Selvan S, Gaugler R, Lewis EE. 1993. Biochemical energy reserves of entomopathogenic nematodes. Journal of Parasitology. 79(2): 167–172. https://doi.org/10.2307/3283503 DOI: https://doi.org/10.2307/3283503
Shapiro-Ilan DI, Gaugler R. 2002. Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology and Biotechnology. 28(3):137–146. https://doi.org/10.1038/sj.jim.7000230 DOI: https://doi.org/10.1038/sj.jim.7000230
Shapiro-Ilan DI, Han R, Dolinksi C. 2012. Entomopathogenic nematode production and application technology. Journal of Nematology. 44(2):206–217.
Steyn VM, Malan AP, Addison P. 2021. Efficacy of entomopathogens against Thaumatotibia leucotreta under laboratory conditions. Entomologia Experimentalis et Applicata. 169(5):449–461. https://doi.org/10.1111/eea.13044 DOI: https://doi.org/10.1111/eea.13044
Strauch O, Ehlers RU. 1998. Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Applied Microbiology and Biotechnology. 50(3):369–374. https://doi.org/10.1007/s002530051306 DOI: https://doi.org/10.1007/s002530051306
Strauch O, Stoessel S, Ehlers RU. 1994. Culture conditions define automictic or amphimictic reproduction in entomopathogenic rhabditid nematodes of the genus Heterorhabditis. Fundamental and Applied Nematology. 17(6):575–582.
Surrey MR, Davies R J. 1996. Pilot-scale liquid culture and harvesting of an entomopathogenic nematode, Heterorhabditis bacteriophora. Journal of Invertebrate Pathology. 67(1):92–99. https://doi.org/10.1006/jipa.1996.0013 DOI: https://doi.org/10.1006/jipa.1996.0013
Thomas GM, Poinar Jr GO. 1979. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic and Evolutionary Microbiology. 29(4):352–360. https://doi.org/10.1099/00207713-29-4-352 DOI: https://doi.org/10.1099/00207713-29-4-352
TIBCO Software Inc. 2020. Data Science Workbench, version 14. http://tibco.com
White GF. 1927. A method for obtaining infective nematode larvae from cultures. Science. 66(1927):302–303. https://doi.org/10.1126/science.66.1709.302.b DOI: https://doi.org/10.1126/science.66.1709.302.b
Wouts WM. 1981. Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematoda: Heterorhabditidae) on artificial media. Journal of Nematology. 13(4):467–469.
Yoo SK, Brown I, Gaugler R. 2000. Liquid media development for Heterorhabditis bacteriophora: lipid source and concentration. Applied Microbiology and Biotechnology. 54(6):759–763. https://doi.org/10.1007/s002530000478 DOI: https://doi.org/10.1007/s002530000478
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nicholle Claasen, Murray D Dunn, Antoinette P. Malan

This work is licensed under a Creative Commons Attribution 4.0 International License.