The Asian Citrus Psyllid (Diaphorina citri) in Africa: using MaxEnt to predict current and future climatic suitability, with a focus on potential invasion routes

Authors

DOI:

https://doi.org/10.17159/2254-8854/2024/a18476

Keywords:

citrus, climate change, huanglongbing, Psyllidae, species distribution models

Abstract

The Asian Citrus Psyllid (ACP) (Diaphorina citri Kuwayama, 1908) (Hemiptera: Psyllidae) is a major citrus pest. The species has been introduced to West and East Africa, but has not yet spread to southern Africa, where it could have a devastating impact on citrus farming and livelihoods. A proactive response is key to mitigating the species’ impacts, particularly the ongoing monitoring of potential invasion routes and entry points into South Africa. Species distribution models (SDMs) were developed under current and future climates for ACP in Africa, and these models were used to (1) determine where the species likely poses a threat, (2) identify potential invasion routes into South Africa, and (3) assess how these factors will be affected under climate change. The SDMs indicated that there is an almost contiguous band of suitable climate along the east coast of Africa that joins the species’ current range in East Africa to South Africa, and under aggressive climate change a potential route of invasion through Namibia and Botswana. Much of South Africa is climatically suitable for the species, but under climate change, climatically suitable areas are likely to shift further inland. The spread of ACP into South Africa is unlikely to be prevented, but the outputs of the present models will inform monitoring activities and assist with preparations to respond to this predicted biological invasion.

Downloads

Download data is not yet available.

References

Aidoo OF, Ablormeti FK, Ninsin KD, Antwi-Agyakwa AK, Osei-Owusu J, Heve WK, Dofuor AK, Soto YL, Edusei G, Osabutey AF, et al. 2023. First report on the presence of huanglongbing vectors (Diaphorina citri and Trioza erytreae) in Ghana. Scientific Reports. 13(1):11366. https://doi.org/10.1038/s41598-023-37625-9

Aidoo OF, Souza PGC, da Silva RS, Santana PA Jr, Picanço MC, Kyerematen R, Sètamou M, Ekesi S, Borgemeister C. 2022. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Management Science. 78(6):2534–2549. https://doi.org/10.1002/ps.6886

Ajene IJ, Khamis FM, van Asch B, Pietersen G, Seid N, Rwomushana I, Ombura FLO, Momanyi G, Finyange P, Rasowo BA, et al. 2020. Distribution of Candidatus Liberibacter species in Eastern Africa, and the First Report of Candidatus Liberibacter asiaticus in Kenya. Scientific Reports. 10(1):3919. https://doi.org/10.1038/s41598-020-60712-0

Alvarez S, Rohrig E, Solís D, Thomas MH. 2016. Citrus Greening Disease (Huanglongbing) in Florida: Economic Impact, Management and the Potential for Biological Control. Agricultural Research. 5(2):109–118. https://doi.org/10.1007/s40003-016-0204-z

Andrade M, Li J, Wang N. 2020. Candidatus liberibacter asiaticus: virulence traits and control strategies. Tropical Plant Pathology. 45(3):285–297. https://doi.org/10.1007/s40858-020-00341-0

Aubert B, Quilici S. 1984. Biological control of the African and Asian citrus psyllids (Homoptera: Psylloidea), through eulophid and encyrtid parasites (Hymenoptera: Chalcidoidea) in Reunion Island. International Organization of Citrus Virologists Conference Proceedings (1957-2010). 9(9):100–108. https://doi.org/10.5070/C52ND04219

Aurambout JP, Finlay KJ, Luck J, Beattie GAC. 2009. A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—A means for assessing biosecurity risk. Ecological Modelling. 220(19):2512–2524. https://doi.org/10.1016/j.ecolmodel.2009.05.010

Bassanezi RB, Lopes SA, de Miranda MP, Wulff NA, Volpe HXL, Ayres AJ. 2020. Overview of citrus huanglongbing spread and management strategies in Brazil. Tropical Plant Pathology. 45(3):251–264. https://doi.org/10.1007/s40858-020-00343-y

Belasque J, Bassanezi RB, Yamamoto PT, Ayres AJ, Tachibana A, Violante AR, Tank A, Di Giorgi F, Tersi FEA, Menezes GM, et al. 2010. Lessons from Huanglongbing Management in São Paulo State, Brazil. Journal of Plant Pathology. 92(2):285–302.

Bertelsmeier C, Keller L. 2018. Bridgehead effects and role of adaptive evolution in invasive populations. Trends in Ecology & Evolution. 33(7):527–534. https://doi.org/10.1016/j.tree.2018.04.014

Bivand R, Rundel C, Pebesma E, Stuetz R, Hufthammer KO, Bivand MR. 2023. rgeos: Interface to Geometry Engine - Open Source (‘GEOS’) [The Comprehensive R Archive Network]. https://rgeos.r-forge.r-project.org/

Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters. 10(8):701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x

Capener AL. 1970a. Southern African Psyllidae (Homoptera) - 1: A check list of species recorded from South Africa, with notes on the Pettey collection. Journal of the Entomological Society of Southern Africa. 33(2):195–200. https://doi.org/10.10520/AJA00128789_3127

Capener AL. 1970b. Southern African Psyllidae (Homoptera) - 2: some new species of Diaphorina Löw. Journal of the Entomological Society of Southern Africa. 33(2):201–226. https://doi.org/10.10520/AJA00128789_3128

Capener AL. 1973. Southern African Psyllidae (Homoptera)-3: A new genus and new species of South African Psyllidae. Journal of the Entomological Society of Southern Africa. 36(1):37–61. https://doi.org/10.10520/AJA00128789_3078

Capinha C, Anastácio P. 2011. Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions. 17(1):13–24. https://doi.org/10.1111/j.1472-4642.2010.00727.x

Catling HD. 1969. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) I. The influence of the flushing rhythm of citrus and factors which regulate flushing. Journal of the Entomological Society of Southern Africa. 32:273–290.

CGA. 2022. Citrus Growers’ Association of Southern Africa: 2022 industry statistics (p. 48) [Annual report].

do Carmo Teixeira D, Luc Danet J, Eveillard S, Cristina Martins E, Cintra de Jesus Junior W, Takao Yamamoto P, Aparecido Lopes S, Beozzo Bassanezi R, Juliano Ayres A, Saillard C, et al. 2005. Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Molecular and Cellular Probes. 19(3):173–179. ttps://doi.org/10.1016/j.mcp.2004.11.002

Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañez I, Miller LP, et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications. 7(1):12485. https://doi.org/10.1038/ncomms12485

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics. 40(1):677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Elith J, Kearney M, Phillips S. 2010. The art of modelling range‐shifting species. Methods in Ecology and Evolution. 1(4):330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

Faulkner KT, Hurley BP, Robertson MP, Rouget M, Wilson JRU. 2017a. The balance of trade in alien species between South Africa and the rest of Africa. Bothalia. 47(2):a2157. https://doi.org/10.4102/abc.v47i2.2157

Faulkner KT, Robertson MP, Rouget M, Wilson JRU. 2017b. Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa. PLoS One. 12(4):e0173340. https://doi.org/10.1371/journal.pone.0173340

Faulkner KT, Robertson MP, Wilson JRU. 2020. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions. Global Change Biology. 26(4):2449–2462. https://doi.org/10.1111/gcb.15006

Ferrarezi RS, Vincent CI, Urbaneja A, Machado MA. 2020. Editorial: Unravelling Citrus Huanglongbing Disease. Frontiers in Plant Science. 11:609655. https://doi.org/10.3389/fpls.2020.609655

Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 37(12):4302–4315. https://doi.org/10.1002/joc.5086

Gottwald TR. 2010. Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology. 48(1):119–139. https://doi.org/10.1146/annurev-phyto-073009-114418

Grafton-Cardwell EE, Stelinski LL, Stansly PA. 2013. Biology and management of asian citrus psyllid, vector of the huanglongbing pathogens. Annual Review of Entomology. 58(1):413–432. https://doi.org/10.1146/annurev-ento-120811-153542

Graham J, Gottwald T, Setamou M. 2020. Status of Huanglongbing (HLB) outbreaks in Florida, California and Texas. Tropical Plant Pathology. 45(3):265–278. https://doi.org/10.1007/s40858-020-00335-y

Guillaumot C, Moreau C, Danis B, Saucède T. 2020. Extrapolation in species distribution modelling. Application to Southern Ocean marine species. Progress in Oceanography. 188:102438. https://doi.org/10.1016/j.pocean.2020.102438

Halbert SE, Manjunath KL. 2004. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomologist. 87(3):330–353. https://doi.org/10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO.2

Hall DG, Richardson ML, Ammar E-D, Halbert SE. 2013. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomologia Experimentalis et Applicata. 146(2):207–223. https://doi.org/10.1111/eea.12025

Hijmans RJ, Phillips S, Leathwick J, Elith J. 2023a. dismo: Species Distribution Modeling (1.3-14) [The Comprehensive R Archive Network]. https://cran.r-project.org/web/packages/dismo/index.html

Hijmans RJ, Barbosa M, Ghosh A, Mandel A. 2023b. geodata: Download Geographic Data (0.5-9) [The Comprehensive R Archive Network]. https://cran.r-project.org/web/packages/geodata/index.html

Hijmans RJ, Bivand R, Pebesma E, Summer MD. 2023c. terra: Spatial Data Analysis (1.7 -55) [The Comprehensive R Archive Network]. https://cran.rproject.org/web/packages/terra/index.html

Hollis D. 1984. Afrotropical jumping plant lice of the family Triozidae (Homoptera: psylloidea). Bulletin of the British Museum. 49:1–432. [Natural History].

Hope RM. 2013. Rmisc: Ryan Miscellaneous (1.5.1). [The Comprehensive R Archive Network]. https://cran.r-project.org/web/packages/Rmisc/index.html

International Plant Protection Convention (IPPC). 2024. Pest reports: Notification on the detection of Drosophila suzukii, the Spotted Wing Drosophila (SWD) in the Republic of South Africa. https://www.ippc.int/en/countries/south-africa/pestreports/2024/05/notification-of-the-detection-of-drosophila-suzukii-the-spotted-wing-drosophila-swd-in-the-republic-of-south-africa/ [Accessed 31 July 2024]

Jiménez L, Soberón J, Christen JA, Soto D. 2019. On the problem of modelling a fundamental niche from occurrence data. Ecological Modelling. 397:74–83. https://doi.org/10.1016/j.ecolmodel.2019.01.020

Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM. 2011. Use of niche models in invasive species risk assessments. Biological Invasions. 13(12):2785–2797. https://doi.org/10.1007/s10530-011-9963-4

Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla‐Buitrago GE, Boria RA, Soley‐Guardia M, Anderson RP. 2021. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution. 12(9):1602–1608. https://doi.org/10.1111/2041-210X.13628

Lau JA, McCall AC, Davies KF, McKay JK, Wright JW. 2008. Herbivores and edaphic factors constrain the realized niche of a native plant. Ecology. 89(3):754–762. https://doi.org/10.1890/07-0591.1

Legendre P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology. 74(6):1659–1673. https://doi.org/10.2307/1939924

Lemic D, Kriticos DJ, Viric Gasparic H, Pajač Živković I, Duffy C, Akrivou A, Ota N. 2024. Global change and adaptive biosecurity: managing current and emerging Aleurocanthus woglumi threats to Europe. Current Opinion in Insect Science. 62:101164. https://doi.org/10.1016/j.cois.2024.101164

Li X, Ruan H, Zhou C, Meng X, Chen W. 2021. Controlling citrus huanglongbing: green sustainable development route is the future. Frontiers in Plant Science. 12:760481. https://doi.org/10.3389/fpls.2021.760481

Li X, Wang Y. 2013. Applying various algorithms for species distribution modelling. Integrative Zoology. 8(2):124–135. https://doi.org/10.1111/1749-4877.12000

Lima C. 1942. Insetos do Brasil: Homopteros. Rio de Janeiro, Brazil: Escola Nacional de Agronomia. 327 p.

Liu C, Wolter C, Xian W, Jeschke JM. 2020. Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America. 117(38):23643–23651. https://doi.org/10.1073/pnas.2004289117

Martin C. 2023. ggConvexHull: Add a convex hull geom to ggplot2. https://github.com/cmartin/ggConvexHull

Mau-Crimmins TM, Schussman HR, Geiger EL. 2006. Can the invaded range of a species be predicted sufficiently using only native-range data? Ecological Modelling. 193(3-4):736–746. https://doi.org/10.1016/j.ecolmodel.2005.09.002

McCollum G, Baldwin E. 2016. Huanglongbing: devastating disease of citrus. In: Janick J, editor. Horticultural Reviews. John Wiley & Sons, Inc. pp. 315–361. https://doi.org/10.1002/9781119281269.ch7

Merow C, Smith MJ, Silander JA Jr. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. 36(10):1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

Morel-Journel T, Assa CR, Mailleret L, Vercken E. 2019. It’s all about connections: hubs and invasion in habitat networks. Ecology Letters. 22(2):313–321. https://doi.org/10.1111/ele.13192

Muatinte BI, den Berg JV, Santos LA. 2014. Prostephanus truncatus in Africa: A review of biological trends and perspectives on future pest management strategies. African Crop Science Journal. 22(3):3.

Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography. 37(2):191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x

Narouei-Khandan HA, Halbert SE, Worner SP, van Bruggen AHC. 2016. Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modelling approaches, with emphasis on the USA. European Journal of Plant Pathology. 144(3):655–670. https://doi.org/10.1007/s10658-015-0804-7

Oke AO, Oladigbolu AA, Kunta M, Alabi OJ, Sétamou M. 2020. First report of the occurrence of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae), an invasive species in Nigeria, West Africa. Scientific Reports. 10(1): 9418. https://doi.org/10.1038/s41598-020-66380-4

Pebesma E, Bivand R, Rowlingson B, Gomez-Rubio V, Hijmans R, Sumner M, MacQueen D, Lemon J, Lindgren F, O’Brien J. 2020. Sp: Classes and Methods for Spatial Data. R Package Version 1.4-1 [The Comprehensive R Archive Network]. https://CRAN.R-project.org/package=sp

Pérez-Rodríguez J, Krüger K, Pérez-Hedo M, Ruíz-Rivero O, Urbaneja A, Tena A. 2019. Classical biological control of the African citrus psyllid Trioza erytreae, a major threat to the European citrus industry. Scientific Reports. 9(1):9440. https://doi.org/10.1038/s41598-019-45294-w

Peterson AT. 2011. Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography. 38(5):817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x

Pettey FW. 1933. New species of South African psyllids. III: Entomological Memoirs. 2:3–23. [Department of Agriculture.].

Pettey FW. 1924. South African Psyllids. Entomological Memoirs. 2:21–30. [Department of Agriculture.].

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190(3-4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open‐source release of Maxent. Ecography. 40(7):887–893. https://doi.org/10.1111/ecog.03049

R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Radosavljevic A, Anderson RP. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography. 41(4):629–643. https://doi.org/10.1111/jbi.12227

Reynaud B, Turpin P, Molinari FM, Grondin M, Roque S, Chiroleu F, Fereres A, Delatte H. 2022. The African citrus psyllid Trioza erytreae: an efficient vector of Candidatus Liberibacter asiaticus. Frontiers in Plant Science. 13:1089762. https://doi.org/10.3389/fpls.2022.1089762

Roberts R, Cook G, Grout TG, Khamis F, Rwomushana I, Nderitu PW, Seguni Z, Materu CL, Steyn C, Pietersen G, et al. 2017. Resolution of the identity of “Candidatus Liberibacter” species from huanglongbing-affected citrus in East Africa. Plant Disease. 101(8):1481–1488. https://doi.org/10.1094/PDIS-11-16-1655-RE

Rodríguez-Aguilar O, López-Collado J, Soto-Estrada A, Vargas-Mendoza M. de la C., García-Avila C. de J. 2023. Future spatial distribution of Diaphorina citri in Mexico under climate change models. Ecological Complexity. 53:101041. https://doi.org/10.1016/j.ecocom.2023.101041

Rwomushana I, Khamis FM, Grout TG, Mohamed SA, Sétamou M, Borgemeister C, Heya HM, Tanga CM, Nderitu PW, Seguni ZS, et al. 2017. Detection of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in Kenya and potential implication for the spread of Huanglongbing disease in East Africa. Biological Invasions. 19(10):2777–2787. https://doi.org/10.1007/s10530-017-1502-5

Saccaggi DL, Ueckermann EA. 2024. The problem of taxonomic uncertainty in biosecurity: south African mite interceptions as an example. Acarologia. 64(2):363. https://doi.org/10.24349/top1-r59v

Saponari M, De Bac G, Breithaupt J, Loconsole G, Yokomi RK, Catalano L. 2010. First report of “Candidatus Liberibacter asiaticus” associated with Huanglongbing in sweet orange in Ethiopia. Plant Disease. 94(4):482. https://doi.org/10.1094/PDIS-94-4-0482A

Saupe EE, Barve N, Owens HL, Cooper JC, Hosner PA, Peterson AT. 2018. Reconstructing ecological niche evolution when niches are incompletely characterized. Systematic Biology. 67(3):428–438. https://doi.org/10.1093/sysbio/syx084

Sétamou M, Soto YL, Tachin M, Alabi OJ. 2023. Report on the first detection of Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) in the Republic of Benin, West Africa. Scientific Reports. 13(1):801. https://doi.org/10.1038/s41598-023-28030-3

Shimwela MM, Narouei-Khandan HA, Halbert SE, Keremane ML, Minsavage GV, Timilsina S, Massawe DP, Jones JB, van Bruggen AHC. 2016. First occurrence of Diaphorina citri in East Africa, characterization of the Ca. Liberibacter species causing huanglongbing (HLB) in Tanzania, and potential further spread of D. citri and HLB in Africa and Europe. European Journal of Plant Pathology. 146(2):349–368. https://doi.org/10.1007/s10658-016-0921-y

Shipley BR, Bach R, Do Y, Strathearn H, McGuire JL, Dilkina B. 2022. megaSDM: integrating dispersal and time‐step analyses into species distribution models. Ecography. 2022(1):ecog.05450. https://doi.org/10.1111/ecog.05450

Sileshi GW, Gebeyehu S, Mafongoya PL. 2019. The threat of alien invasive insect and mite species to food security in Africa and the need for a continent-wide response. Food Security. 11(4):763–775. https://doi.org/10.1007/s12571-019-00930-1

Simoes AJG, Hidalgo CA. 2011. The Economic Complexity Observatory: An Analytical Tool for Understanding the Dynamics of Economic Development. Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence. https://oec.world/en/profile/bilateral-product/citrus/reporter/zaf [Accessed 31 July 2024]

Skelley LH, Hoy MA. 2004. A synchronous rearing method for the Asian citrus psyllid and its parasitoids in quarantine. Biological Control. 29(1):14–23. https://doi.org/10.1016/S1049-9644(03)00129-4

Stelinski LL. 2019. Ecological aspects of the vector-borne bacterial disease, citrus greening (Huanglongbing): dispersal and host use by Asian citrus psyllid, Diaphorina citri Kuwayama. Insects. 10(7):208. https://doi.org/10.3390/insects10070208

Sutton GF, Martin GD. 2022. Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect. Ecological Modelling. 473:110139. https://doi.org/10.1016/j.ecolmodel.2022.110139

Trethowan PD, Robertson MP, McConnachie AJ. 2011. Ecological niche modelling of an invasive alien plant and its potential biological control agents. South African Journal of Botany. 77(1):137–146. https://doi.org/10.1016/j.sajb.2010.07.007

Urbaneja-Bernat P, Pérez-Rodríguez J, Krüger K, Catalán J, Rizza R, Hernández-Suárez E, Urbaneja A, Tena A. 2019. Host range testing of Tamarixia dryi (Hymenoptera: Eulophidae) sourced from South Africa for classical biological control of Trioza erytreae (Hemiptera: Psyllidae) in Europe. Biological Control. 135:110–116. https://doi.org/10.1016/j.biocontrol.2019.04.018

USDA. 2023a. Citrus July Forecast (p. 2). USDA. https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Forecast/2022-23/cit0723.pdf

USDA. 2023b. USDA, National Agricultural Statistics Service, 2023 [dataset]. https://quickstats.nass.usda.gov/

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. 2019. blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution. 10(2):225–232. https://doi.org/10.1111/2041-210X.13107

Van den Berg M, Greenland J. 2000. Tamarixia dryi, parasitoid of the citrus psylla, Trioza erytreae: A review. African Plant Protection. 6(1):25–28.

VanDerWal J, Shoo LP, Graham C, Williams SE. 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling. 220(4):589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010

Venter J-H. 2017. The new invasive fall armyworm (FAW) in South Africa. Agricultural Research Council-Plant Protection Research Institute. http://www.arc.agric.za/arc-ppri/FactSheetsLibrary/ThenewInvasiveFallArmyworm(FAW)inSouthAfrica.pdf

Visser D, Uys V, Nieuwenhuis R, Pieterse W. 2017. First records of the tomato leaf miner Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in South Africa. BioInvasions Records. 6(4):301–305. https://doi.org/10.3391/bir.2017.6.4.01

Volpe HXL, Carmo-Sousa M, Luvizotto RAG, de Freitas R, Esperança V, Darolt JC, Pegoraro AAL, Magalhães DM, Favaris AP, Wulff NA, et al. 2024. The greening-causing agent alters the behavioral and electrophysiological responses of the Asian citrus psyllid to a putative sex pheromone. Scientific Reports. 14(1):455. https://doi.org/10.1038/s41598-023-50983-8

Wang R, Yang H, Luo W, Wang M, Lu X, Huang T, Zhao J, Li Q. 2019. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ. 7:e7323. https://doi.org/10.7717/peerj.7323

Wang R, Yang H, Wang M, Zhang Z, Huang T, Wen G, Li Q. 2020. Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios. Scientific Reports. 10(1):9202. https://doi.org/10.1038/s41598-020-66274-5

Ward DF. 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions. 9(6):723–735. https://doi.org/10.1007/s10530-006-9072-y

Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics. 36(1):519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431

Yang Y, Huang M, C. Beattie GA, Xia Y, Ouyang G, Xiong J. 2006. Distribution, biology, ecology and control of the psyllid Diaphorina citri Kuwayama, a major pest of citrus: A status report for China. International Journal of Pest Management. 52(4):343–352. https://doi.org/10.1080/09670870600872994

Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF, Parnell S, Fielding AH, Bamford AJ, Ban S, Barbosa AM, et al. Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution. 2018.33(10):790–802. https://doi.org/10.1016/j.tree.2018.08.001

Zhou C. 2020. The status of citrus Huanglongbing in China. Tropical Plant Pathology. 45(3):279–284. https://doi.org/10.1007/s40858-020-00363-8

Downloads

Published

2024-10-11

Issue

Section

Articles

How to Cite

1.
The Asian Citrus Psyllid (Diaphorina citri) in Africa: using MaxEnt to predict current and future climatic suitability, with a focus on potential invasion routes. Afr. Entomol. [Internet]. 2024 Oct. 11 [cited 2025 Jan. 21];32. Available from: https://www.africanentomology.com/article/view/18476

Most read articles by the same author(s)