Effect of temperature and relative humidity on some biological traits of two Trichogramma cacoeciae (Marchal) (Hymenoptera: Trichogrammatidae) strains
DOI:
https://doi.org/10.17159/2254-8854/2025/a16201Keywords:
abiotic factors, biological control, egg parasitoid, parasitism, emergenceAbstract
Temperature and relative humidity are key factors affecting the physiological and behavioural responses of natural enemies, including Trichogramma parasitoids frequently employed as biological control agents. Here, the effect of three temperatures (25, 30 and 35 °C) and relative humidity levels (10, 75 and 100%) on the fitness of two Trichogramma cacoeciae (Marchal) strains (Tunisian/Italian) were evaluated. Results indicated that temperature and relative humidity influenced all life-history parameters of parasitoids. Parasitism of the G0 generation by the Tunisian strain was higher compared to that of the Italian strain at 30 °C (10% RH) (22.33 ± 5.94 and 16.46 ± 6.45, respectively, for the Tunisian and Italian strain) and 35 °C (75% RH) (16.26 ± 5.11 and 11.33 ± 5.81, respectively, for the Tunisian and Italian strain). Furthermore, the parasitism rate is better in the G1 compared to the G0 generation only for the Italian strain at 25–30 °C and at 10, 75 and 100% RH. Emergence was significantly decreased for both strains at 35 °C regardless of the relative humidity level. For the G1 generation, no parasitism and emergence were shown by the Italian strain at 35 °C for all tested relative humidities. Our data indicate the Tunisian strain is adapted to higher temperatures. The implications of these results to improve the biological control of lepidopteran pests are discussed.
Downloads
References
Alloui-Griza R, Attia S, Cherif A, Hamdi F, Grissa-Lebdi K. 2022. Effectiveness of different management strategies against Ectomyeloïs ceratoniae Zeller (Lepidoptera: Pyralidae) in citrus orchards in Tunisia. Oriental Insects 56(4): 561–583. https://doi.org/10.1080/00305316.2022.2030290. DOI: https://doi.org/10.1080/00305316.2022.2030290
Calvin DD, Knapp MC, Welch SM, Poston FL, Elzinga RJ. 1984. Impact of Environmental Factors on Trichogramma pretiosum Reared on Southwestern Corn Borer Eggs. Environmental Entomology 13: 774–780. https://doi.org/10.1093/ee/13.3.774. DOI: https://doi.org/10.1093/ee/13.3.774
Cherif A, Mansour R, Attia-Barhoumi S, Zappalà L, Grissa-Lebdi K. 2019. Effectiveness of different release rates of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) against Tuta absoluta (lepidoptera: Gelechiidae) in protected and open field tomato crops in Tunisia. Biocontrol Science and Technology 29: 149–161. https://doi.org/10.1080/09583157.2018.1542485. DOI: https://doi.org/10.1080/09583157.2018.1542485
Cherif A, Mansour R, Grissa-Lebdi K. 2021. The egg parasitoids Trichogramma: from laboratory mass rearing to biological control of lepidopteran pests. Biocontrol Science and Technology 31(7): 661–693. https://doi.org/10.1080/09583157.2020.1871469. DOI: https://doi.org/10.1080/09583157.2020.1871469
del Pino M, Gallego JR, Hernández Suárez E, Cabello T. 2020. Effect of Temperature on Life History and Parasitization Behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae). Insects 11(8): 482. https://doi.org/10.3390/insects11080482. DOI: https://doi.org/10.3390/insects11080482
Gross HR. 1988. Effect of temperature, humidity and free water on the number and normalcy of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) emerging from eggs of Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Environmental Entomology 17: 470–475. DOI: https://doi.org/10.1093/ee/17.3.470
Hached W, Sahraoui H, Blel A, Lebdi-Grissa K. 2021. Biological control of Ectomyelois ceratoniae Zeller (Lepidoptera: pyralidae) using the egg parasitoid Trichogramma cacoeciae Marchal (Hymenoptera: trichogrammatidae) in a Tunisian citrus orchard. Journal of Entomology and Zoology Studies 9(3): 98–104.
Han P, Becker C, Sentis A, Rostás M, Desneux N, Lavoir AV. 2019. Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Current Opinion in Insect Science 35: 27–33. https://doi.org/10.1016/j.cois.2019.05.005. DOI: https://doi.org/10.1016/j.cois.2019.05.005
Hodgman CD. 1948. Handbook of Chemistry and Physics. 44th edition. Cleveland: Chemical Rubber; p. 3603.
Iqbal A, Hou Y-Y, Chen Y-M, Ali A, Monticelli LS, Desneux N, Zang L-S. 2020. Impact of Trichogramma parasitoid age on the outcome of multiparasitism in the factitious host eggs of Chinese oak silkworm, Antheraea pernyi. Journal of Pest Science 93(4): 1347–1357. https://doi.org/10.1007/s10340-020-01239-1. DOI: https://doi.org/10.1007/s10340-020-01239-1
Jalali SK, Mohanraj P, Lakshmi BL. 2016. Trichogrammatids. In: Omkar (editor), Ecofriendly Pest Management for Food Security. London: Academic Press. pp. 139–181. DOI: https://doi.org/10.1016/B978-0-12-803265-7.00005-1
KalyKalyebi A, Overholt WA, Schulthess F, Mueke JM, Hassan SA, Sithanantham S. 2005a. Functional response of six indigenous trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) in Kenya: influence of temperature and relative humidity. Biological Control 32: 164–171. https://doi.org/10.1016/j.biocontrol.2004.09.006. DOI: https://doi.org/10.1016/j.biocontrol.2004.09.006
Kalyebi A, Sithanantham S, Overholt WA, Hassan SA, Mueke JM. 2005b. Parasitism, longevity and progeny production of six indigenous Kenyan trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) at different temperature and relative humidity regimes. Biocontrol Science and Technology 15(3): 255–270. http://dx.doi.org/10.1080/09583150400016886. DOI: https://doi.org/10.1080/09583150400016886
List GM. 1930. Some Experiences in Breeding Trichogramma minlltllm Riley. Journal of Economic Entomology 23: 342–348. https://doi.org/10.1093/jee/23.2.342a. DOI: https://doi.org/10.1093/jee/23.2.342a
Lund HO. 1934. Some temperature and humidity relations of two races of Trichogramma minutum Riley (Hym. Chalcididae). Annals of Entomological Society of America 27: 324–340. https://doi.org/10.1093/aesa/27.2.324. DOI: https://doi.org/10.1093/aesa/27.2.324
Mills NJ. 2009. Egg parasitoids in biological control and integrated pest management. In: Cônsoli FL, Parra JPR, Zucchi RA (editors), Egg parasitoids in Agroecosystems with Emphasis on Trichogramma. New York: Springer. pp. 389–411. https://doi.org/10.1007/978-1-4020-9110-0_15. DOI: https://doi.org/10.1007/978-1-4020-9110-0_15
Nagaraja H. 2013. Mass production of Trichogrammatid parasitoids. In: Sithanantham S, Ballal CR, Jalali SK, Bakthavatsalam N, editors. Biological control of insect pests using Egg parasitoids. New York: Springer. pp. 175–189. https://doi.org/10.1007/978-81-322-1181-5_8. DOI: https://doi.org/10.1007/978-81-322-1181-5_8
Pizzol J, Pintureau B, Khoualdia O, Desneux N. 2010. Temperature-dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Pest Science 83(4): 447–452. https://doi.org/10.1007/s10340-010-0327-0. DOI: https://doi.org/10.1007/s10340-010-0327-0
Querino RB, Zucchi RA, Pinto JD. 2009. Systematics of the Trichogrammatidae (Hymenoptera: Chalcidoidea) with a focus on the genera attacking Lepidoptera. In: Consoli F, Parra J, Zucchi R, (editors), Egg parasitoids in agroecosystems with emphasis on Trichogramma. Progress in biological control. New York: Springer. pp. 191–218. https://doi.org/10.1007/978-1-4020-9110-0_7. DOI: https://doi.org/10.1007/978-1-4020-9110-0_7
Rosenblatt AE, Schmitz OJ. 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends in Ecology and Evolotion 31(12): 965–975. https://doi.org/10.1016/j.tree.2016.09.009. DOI: https://doi.org/10.1016/j.tree.2016.09.009
Sokal RR, Rohlf FJ. 1981. Biometry: The principles and practices of statistics in biological research, second ed. New York: Freeman.
Smith SM. 1996. Biological control with Trichogramma: Advances, successes, and potential of their use. Annual Review of Entomology 41: 375–406. https://doi.org/10.1146/annurev.en.41.010196.002111. DOI: https://doi.org/10.1146/annurev.ento.41.1.375
Tabebordbar F, Shishehbor P, Ebrahimi E, Polaszek A, Ugine TA. 2022. Effect of Different Constant Temperatures on Life History and Life Table Parameters of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology 115(2): 474–481. https://doi.org/10.1093/jee/toac007. DOI: https://doi.org/10.1093/jee/toac007
Tang LD, Sun JW, Dai P, Mu MY, Nkunika POY, Desneux N, Zang LS. 2023. Performance of two dominant trichogrammatid species of fall armyworm from China and Africa under contrasted temperature and humidity regimes. Biological Control 179: 105179. https://doi.org/10.1016/j.biocontrol.2023.105179. DOI: https://doi.org/10.1016/j.biocontrol.2023.105179
Thomson LJ, Macfadyen S, Hoffmann AA. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52: 296–306. https://doi.org/10.1016/j.biocontrol.2009.01.022. DOI: https://doi.org/10.1016/j.biocontrol.2009.01.022
Tougeron K, Brodeur J, Le Lann C, Van Baaren J. 2020. How climate change affects the seasonal ecology of insect parasitoids. Ecological Entomology 45: 167–181. https://doi.org/10.1111/een.12792. DOI: https://doi.org/10.1111/een.12792
Vyas-Patel V, Mumford JD. 2018. Morphological variation and strain identification of insects using wings and I3S. BioRxiv. https://doi.org/10.1101/309468. (preprint) DOI: https://doi.org/10.1101/309468
Wajnberg E, Hassan SA. 1994. Biological control with egg parasitoids. Wallingford: CAB International.
Yuan XH, Song LW, Zhang JJ, Zang LS, Zhu L, Ruan CC, Sun GZ. 2012. Performance of four Chinese Trichogramma species as biocontrol agents of the rice striped stem borer, Chilo suppressalis, under various temperature and humidity regimes. Journal of Pest Science 85: 497–504. https://doi.org/10.1007/s10340-012-0456-8. DOI: https://doi.org/10.1007/s10340-012-0456-8
Zougari S, Attia S, Zouba A, Lebdi-Grissa K. 2021. Effectiveness of mass trapping and Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) releases against Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in Tunisian oases. Biologia (Bratisl) 76(4):1175–1188. https://doi.org/10.2478/s11756-020-00628-2. DOI: https://doi.org/10.2478/s11756-020-00628-2
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Asma Cheirf, Rafika Alloui-Griza, Wiem Hached, KAOUTHAR GRISSA-LEBDI

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
European Commission
Grant numbers E64I18002460007